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Surrunary: At elevated temperatures -OH is found to abstract H from benzene derivatives; in air, 

phenols are then generated via reversible addition of ArOO- to arexe. 

Following our studies on gas-phase homolytic chlorination', cyanation2 and nitration 
3 

of ben-- 

zene derivatives, we are currently investigating (aut)oxidation of arenes. In autoxidation, re- 

actions with hydroxyl radicals constitute important first steps in solution and in troposphere 

chemistry as well as in combustion 
4 
. 

The interaction of .OH with arenes has been extensively studied in solution at ambient temp- 

erature 5. The major pathway is addition (eq. I); depending on substitution, ipso-attack (2) may 

also obtain. Ring hydrogen abstraction (3) is not observed under these conditions. In appropriate 

cases (e.g. X=Me, or OMe) side-chain abstraction (4) competes with (1,2). 

With efficient oxidation intermediates (L) yield phenols (E)6-eq. la -; product compositions 

(isomer distributions and/or v +X/~$~)reflect relative rates of addition of the electrophilic 

-OH radical. 

As solvent effects on these relative rates are assumedly small7 relative rates of (I), (2) and (3) 

in the gas-phase at ambient temperature will be comparable with those in solution. In air the fate - 

of I is rather complex, involving addition of 0 
tl * now product ratios for II may well differ froz 
2' 

relative rates of addition of *OH (eq. I). 

X 
HO* + 

biaryls 

X C&I 
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Kecent kinetic studies have shown that, in nitrogen above 200°C, radicals r can revert to 

arene and *OH (eq. -I), e.g. toluene then giving side-chain abstraction (4) only. The reversibil- 

ity of 'OH addition (1, -1) is also indicated in liquid-phase systems above 80 
0 IO . These publica- 

tions prompt us to communicate some of our results on the reaction of *OH with benzene derivatives 

in nitrogen and in air at > 29O'C. 

Runs were performed in a flow system (atmospheric pressure, residence times 1-2 min.); at 290°C 
12 

'OH was generated via thermolysis of tBuOOH . 

In nitrogen, benzene yields biphenyl only (Table I). _-_-__- Clearly I cannot be oxidised under these con- 

ditions, resulting in (3) being the prominent first step, followed by (3a). With chlorobenzene -_--_---___-- 

comparable results are obtained, ClC H producing ClC6H4-C6H4Cl and some ClC6H4-C6H5 
15 

6 4. ; ipso-sub- 

stitution leads to phenol. Benzonitrile also gives biaryls but no phenol. Toluene gives side-chain -_---___---_ 

abstraction (4), benzyl radicals dimerize or combine with *CH 
16 12 

3 
stemming from tBu0 radicals . 

Note that the yield of combination products is quantitative : 100% H-abstraction by 'OH (eq. 4), 

44% of the 'CH3 radicals reacting similarly. Likewise, 

is known to isomerize to C H -CH20. 
17 

anisole initially gives C6H5-0CH2', which 

65 
; the latter species forms benzaldehyde. 

In the presence of iodine (ca. ----_- 1% on arene) part of the aryl radicals is scavenged to give ArI 

(3b), cf isomer patterns in Table 2. - -__ As our earlier work on competitive arylation/chlorination' 

has shown e.g. c,- m- and p-ClC H or CC1 _- - 64 
* react equally fast with Cl 

2 4 
it is fairly safe to as- 

sume that the isomer distributions for XC6H41 reflect those for H- abstraction by *Oh (eq. I). 

These patterns are quite unlike those for hydroxylation via addition of 'OH and subsequent oxida- 
6 

tion of intermediates I (I, la) ; our data (Table 2) show more resemblance to the isomer distribu- _-. 

tion for H- abstraction by Cl* atoms'. 
I8 

These aspects will be discussed in more detail elsewhere ; 

suffice it to point out that H-abstraction by *OH is exothermal by ca. IO kcal/mol and hence, will 

have a rather "early" transition state, whereas C H 
66 

+ Cl* + C6H5' + HCl is endothermal by 6 kcal 

with a product-like transition state'. 

TABLE i 

X nitrogen x (Z)') in air .x (")')_ 

H $$(100) 25 $OH(lOO) 41 

Cl Cl$$C1(65); C1$$(12); VJH(23) 15 gOH(21); ClQOH(79) 
5i, 

CN NC@$CN(83); O$CN(l7) 6 NC$OH(lOO) 16 

CH3 
$CH2CH3(56); $CH2CH2+(44) 100 $CH0(65); @CH2CH2$(6); 

$ca,OH(b); $OH(l6); HO$CH3(7) 202 

OCH3 @cH0(68); $OH(32) 100 $CHO(IO); aOH(86); HO$OCB3(4) 124 

I) in mall on tBuOOH 0 
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TABLE 2 -- 

Isomer distributions for XC&,1 - 

X 0cs.j m(X) PC%) - 

Cl 24 53 23 

CN 41 39 20 

CH3 48 (52) 

OCH3 25 (75) 

- 

HO* + $CH3[9Kq 

x@oo~+ 0 0 

(5) 

7-51 

Reactions in air (Table I) involve 

TABLE 3 -- 

Isomer distributions for X$OH -- 

X o(X) m(X) - .--- P(X) 

Cl 19 64 17 

CN 6 65 29 

CH3 18 63 19 

OCH3 9 77 14 

(4) s. 9CHy [9OCH+ 9CHz0j+ H,O 

OH 

oxygen as an effective scavenger for aryl radicals 
19 

. Now ben- 

zene gives phenol as the only detectable product; chlorobenzene and benzonitrile produce XC6H40H 

analogously. Toluene gives products derived from C H Cl-l 6 4 2. Remarkably, cresols are also formed, as 

is some CH30C6H40H from anisole. Isomer distributions are exemplified in Table 3. These patterns 

differ markedly not only from those in Table 2 but also from distributions associated with low 

temperature additions of *OH 5.6 . By reversibility (I, -1) thermodynamic factors as to isomeric 

composition of I come into play. Furthermore, relative rates of oxidation (la) by O2 may be dif- 

ferent for the various isomers of I _. Differences in free energy of formation of isomers of Ewwil 
20 

also play a part, favouring larger proportions of meta-isomers . 

Altogether, the presence of large amounts of O2 has made pathway (I, -I; la) productive at the ex- 

pense of (3). Thermochemically the sequence 21 (3; 3c; 
22 

5) is not a priori exluded . If this mech- 

anism is of importance at 290°C, it would be responsible for rather selective meta substitution 

on C6H5X. 

We have therefore varied the reaction temperature, employing several other -OH sources (in- -_-_-- 

cludinp HO-N02, HO-OR, alkene or alkane + 02). A gradual, but marked change in isomer distributions 
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c:f XC6H40Ii is noticed. For example, at 450°C, chlorobenzene/air/cyclohexene (5% on arene) Leads 

to CLC6H40H, o:m:p= 40:43:17. At this temperature, pathway (I,-l;la) can be discarded on thermo- 

chemical-kinetic grounds, Leaving.(3;3c;5) as the only realistic alter-utive. Within this sclleme 

unimolecular step(s)(Sa) will gain in importance with increasing temperature. It is of interest 

to note that, in solution at ambient temperature, arene epoxides from several monosubstituted ben- 
23 

zenes preferentially isomerise to o- and p- substituted phenols . - - 

In conclusion: Autoxidation of arenes at ambient temperature involves homolytic hydroxylation; 

at elevated temperatures, reaction will start with H-abstraction by *OH, introduction of OH groups _---_.-__-- 

being the final result of addition of ArOO* radicals to arene. 
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