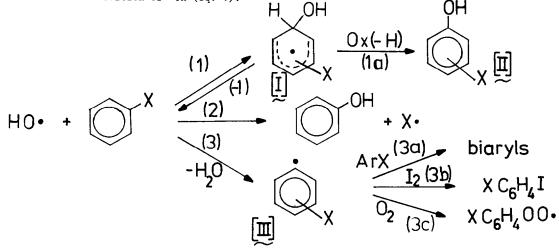
GAS PHASE REACTIONS OF HYDROXYL RADICALS WITH ARENES

P. Mulder and R. Louw*

Gorlaeus Laboratories, University of Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands.


Summary: At elevated temperatures \cdot OH is found to abstract H from benzene derivatives; in air, phenols are then generated via reversible addition of ArOO \cdot to arene.

Following our studies on gas-phase homolytic chlorination¹, cyanation² and nitration³ of benzene derivatives, we are currently investigating (aut)oxidation of arenes. In autoxidation, reactions with hydroxyl radicals constitute important first steps in solution and in troposphere chemistry as well as in combustion⁴.

The interaction of .OH with arenes has been extensively studied in solution at ambient temperature⁵. The major pathway is addition (eq. 1); depending on substitution, <u>ipso</u>-attack (2) may also obtain. Ring hydrogen abstraction (3) is not observed under these conditions. In appropriate cases (e.g. X=Me, or OMe) side-chain abstraction (4) competes with (1,2).

With efficient oxidation intermediates (I) yield phenols (II)⁶-eq. la -; product compositions (isomer distributions and/or $v_{\phi X}^{\prime}/v_{\phi H}$) reflect relative rates of addition of the electrophilic ·OH radical.

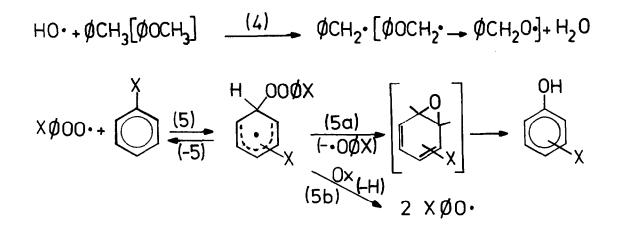
As solvent effects on these relative rates are assumedly small⁷ relative rates of (1), (2) and (3) in the gas-phase at ambient temperature will be comparable with those in solution. In <u>air</u> the fate of I is rather complex, involving addition of 0_2^8 ; now product ratios for II may well differ from relative rates of addition of 'OH (eq. 1).

Recent kinetic studies have shown that, in nitrogen above 200° C, radicals I can revert to arene and \cdot OH (eq. -1), e.g. toluene then giving side-chain abstraction (4) only. The reversibility of \cdot OH addition (1, -1) is also indicated in liquid-phase systems above 80° ¹⁰. These publications prompt us to communicate some of our results on the reaction of \cdot OH with benzene derivatives in nitrogen and in air at > 290° C.

Runs were performed in a flow system (atmospheric pressure, residence times 1-2 min.); at 290°C 'OH was generated via thermolysis of tBuOOH¹².

In nitrogen, benzene yields biphenyl only (Table 1). Clearly I cannot be oxidised under these conditions, resulting in (3) being the prominent first step, followed by (3a). With chlorobenzene comparable results are obtained, ClC_6H_4 . producing $ClC_6H_4-C_6H_4Cl$ and some $ClC_6H_4-C_6H_5^{-15}$; <u>ipso</u>-substitution leads to phenol. Benzonitrile also gives biaryls but no phenol. Toluene gives side-chain abstraction (4), benzyl radicals dimerize or combine with $\cdot CH_3^{16}$ stemming from tBuO radicals¹². Note that the yield of combination products is quantitative : 100% H-abstraction by 'OH (eq. 4), 44% of the \cdot CH₃ radicals reacting similarly. Likewise, anisole initially gives C₆H₅-OCH₂, which is known to isomerize to C_6H_5 -CH₂O.¹⁷; the latter species forms benzaldehyde. In the presence of iodine (ca. 1% on arene) part of the aryl radicals is scavenged to give ArI (3b), cf isomer patterns in Table 2. As our earlier work on competitive arylation/chlorination has shown e.g. o, - m- and p-ClC₆H₄. react equally fast with Cl₂ or CCl₄ it is fairly safe to assume that the isomer distributions for XC_{644} reflect those for H- abstraction by OH (eq. 1). These patterns are quite unlike those for hydroxylation via addition of 'OH and subsequent oxidation of intermediates I (1, 1a)⁶; our data (Table 2) show more resemblance to the isomer distribution for H- abstraction by Cl· atoms¹. These aspects will be discussed in more detail elsewhere 13 ; suffice it to point out that H-abstraction by \cdot OH is exothermal by ca. 10 kcal/mol and hence, will have a rather "early" transition state, whereas $C_{66}^{H} + C_{6}^{H} \rightarrow C_{65}^{H} + HC1$ is endothermal by 6 kcal with a product-like transition state.

TABLE İ


<u>X</u>	nitrogen <u>S</u>	(%)	in air	$Σ (3)^{1}$
н	φφ(100)	25	ф ОН (100)	41
C1	C1¢¢C1(65); C1¢¢(12); ¢OH(2	3) 15	φOH(21); C1φOH(79)	58
CN	NC¢¢CN(83); ¢¢CN(17)	6	NC¢OH(100)	16
СНЗ	¢СН ₂ СН ₃ (56); ¢СН ₂ СН ₂ ¢(44)	100	φCHO(65); φCH ₂ CH ₂ φ(6);	
-			φCH ₂ OH(6); φOH(16); HOφCH ₃ (7)	202
OCH3	φCHO(68); φOH(32)	100	φCHO(10); φOH(86); HOφOCH ₃ (4)	124

in mol% on tBuOOH

TABLE 2

TABLE	3	

Isomer	r distrib	outions for	<u>xc₆H₄I</u>	Isomer distributions for X¢	<u>⊅OH</u>
<u>x</u>	o(%)	m(%)	p(%)	<u>X</u> <u>o(%)</u> m(%) p((%)
C1	24	53	23	C1 19 64	17
CN	41	39	20	CN 6 65	29
CH3	48	(5	2)	CH ₃ 18 63	19
осн 3	25	(7	5)	OCH ₃ 9 77	14

Reactions in <u>air</u> (Table 1) involve oxygen as an effective scavenger for aryl radicals¹⁹. Now benzene gives phenol as the only detectable product; chlorobenzene and benzonitrile produce $XC_{6}H_{4}OH$ analogously. Toluene gives products derived from $C_{6}H_{4}CH_{2}$. Remarkably, cresols are also formed, as is some $CH_{3}OC_{6}H_{4}OH$ from anisole. Isomer distributions are exemplified in <u>Table 3</u>. These patterns differ markedly not only from those in Table 2 but also from distributions associated with low temperature additions of $OH^{5,6}$. By reversibility (1, -1) thermodynamic factors as to isomeric composition of I come into play. Furthermore, relative rates of oxidation (1a) by O_{2} may be different for the various isomers of I. Differences in free energy of formation of isomers of II will also play a part, favouring larger proportions of meta-isomers²⁰.

Altogether, the presence of large amounts of 0_2 has made pathway (1, -1; 1a) productive at the expense of (3). Thermochemically the sequence 21 (3; 3c; 5) is not a priori exluded 22 . If this mechanism is of importance at 290°C, it would be responsible for rather selective <u>meta</u> substitution on C_6H_5X .

We have therefore <u>varied</u> the reaction temperature, employing several other \cdot OH sources (including HO-NO₂, HO-OH, alkene or alkane + O₂). A gradual, but marked change in isomer distributions of XC_6H_4OH is noticed. For example, at 450 °C, chlorobenzene/air/cyclohexene (5% on arene) leads to C1C6H,OH, o:m:p= 40:43:17. At this temperature, pathway (1,-1;1a) can be discarded on thermochemical-kinetic grounds, leaving (3;3c;5) as the only realistic alternative. Within this scheme unimolecular step(s)(5a) will gain in importance with increasing temperature. It is of interest to note that, in solution at ambient temperature, arene epoxides from several monosubstituted benzenes preferentially isomerise to \underline{o} - and p- substituted phenols²³.

In conclusion: Autoxidation of arenes at ambient temperature involves homolytic hydroxylation; at elevated temperatures, reaction will start with H-abstraction by .OH, introduction of OH groups being the final result of addition of ArOO. radicals to arene.

Notes and References.

- 1. W. Dorrepaal and R. Louw, Internat. J. Chem. Kin. 10, 249 (1978).
- (a) K. van Nierop, F.J. Kuyers, W.F.M. Vonk and R. Louw, J.C.S. Perkin II, 1362 (1977); 2.
- (b) K. van Nierop and R. Louw, Recl. Trav. Chim. Pays-Bas, 96, 176 (1977).
- (a) W. Vonk, Thesis Leiden, 1980; (b) ibid, forthcoming papers. 3.
- 4. R. Atkinson, K.R. Darnall, A.C. Lloyd, A.M. Winer and J.N. Pitts, Jr., Adv. in Photochemistry <u>11</u>, 375 (1979).
- $\overline{\mathrm{T.}}$ Tezuka, N. Narita, W. Ando and S. Oae, J. Am. Chem. Soc. 103, 345 (1981) and refsected 5. there.
- (a) M.K. Eberhardt and M.I. Martinez, J. Phys. Chem., 79, 1917 (1975); (b) M.K. Eberhardt, 6. ibid, 81, 1051 (1977); (c) M.K. Eberhardt and M. Yoshida, ibid, 77, 89 (1973).
- M. Güsten, W.G. Filby and S. Schoof, Atmos. Env. 15, 1763 (1981). 7.
- (a) R. Atkinson, W.P.L. Carter, K.L. Darnall, A.M. Winer and J.N. Fitts, Jr., Internat. J. Chem. Kin. 12, 779 (1980); (b) R.A. Kenley, J.E. Davenport and D.G. Hendry, J. Phys. Chem., 85, 2740 (1981).
- (a) F.P. Tully, A.R. Ravishankara, R.L. Thompson, I.M. Nicovich, P.C. Shah, A.M. Kreuffer and 9. P.H. Wine, J. Phys. Chem., 85, 2262 (1981); (b) J.M. Nicovich, P.L. Thompson and A.R. Ravishankara, ibid, p. 2913.
- 10. M.K. Eberhardt, J. Am. Chem. Soc. 103, 3876 (1981).
- 11. k. Louw and E.C. Kooyman, Recl. Trav. Chem. Pays-Bas, 85, 1511 (1965). 12. At 290°, decomposition tBu00H \rightarrow tBu0· + 'OH¹³, was found to be essentially complete; tBu0· splits into acetone and CH2, but, at this temperature, methyl radicals do not add to, or abstract from, benzene¹⁴.
- 13. (a) A.D. Kirk and J.H. Knox, Trans. Far. Soc., 56, 1296 (1960); (b) R.A. Perry, R. Atkinson and J.N. Pitts, J. Phys. Chem. 81, 296 (1977).
- 14. (a) A.F. Trotman-Dickenson and E.W.R. Steacie, J. Chem. Phys., 19, 329 (1951); (b) S.W. Benson, "Thermochemical Kinetics"; Wiley, 1968, p. 100.
- 15. R. Louw and J.W. Rothuizen, Tetrah. Lett., 3807 (1967).
- 16. M.F.R. Mulcahy, D.J. Williams and J.R. Wilmshurst, Austr. J. Chem. 17, 1329 (1964).
- 17. M.F.R. Mulcahy, B.G. Tucker, D.J. Williams and J.R. Wilmshurst, Austr. J. Chem. 20, 1155 (1967).
- 18. (a) P. Mulder, forthcoming thesis, Leiden; (b) F. Mulder and R. Louw, to be published.
- 19. R.G. Krijger, J.P. Lorand, N.R. Stevens and N.R. Herron, J. Am. Chem. Soc., 99, 7589 (1977). 20. For substituted phenols accurate data on heats of formation (or equilibrium composition) are
- lacking. Note however that for alkylfluorobenzenes, m/2p ratios are ca. 2 (G.A. Olah, J. Org. Chem. <u>31</u>, 1262, 1268, 1271 (1966)).
- 21. (a) R.G.W. Norrish and C.W. Taylor, Proc. Roy. Soc. A234, 160 (1966); (b) M.O. Delcourt-Euverte and J. Drillat, Bull. Soc. Chim. Fr., 5 (1970).
- 22. Based on RE(cyclohexadienyl)= 25 kcal/mol (D.G.L. James and R.D. Suart, Chem. Commun., 484, (1966)); $\Delta H_{(5)} \approx -4$; $\Delta H_{(5a)} \approx -8$; $E_{a(5)} \approx 10$, $E_{a(5a)} \ll -15$ kcal/mol. Note that H0₂ (or RO₂) is unable to react according to eq. 5 (cf R.A. Graham, A.M. Winer, R. Atkinson and J.N. Pitts, Jr., J. Phys. Chem. 83, 1563, (1979) as an important driving force (resonance stabilization of ArO (A.J. Colussi, F. Zabel and S.W. Benson, Internat. J. Chem. Kin. 9, 161 (1977)) is absent. Step (5a) with HO₂ would be endothermal by some 15 kcal/mol. $E_{a(5a)}$ exceeding this value, peroxy radicals will preferentially disproportionate, e.g. $2ArOO \rightarrow 2ArO \rightarrow 0_2$, or $ArOO \rightarrow HO_2$. \rightarrow ArOOH + 0₂. For full thermochemical account, see ref. 18.
- 23. D.M. Jerina and J.W. Dalv. Science 185, 573 (1974).

Acknowledgment. The authors thank miss S. Amadio for critically reading the manuscript.

(Received in UK 23 March 1982)